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Using Performance Analysis Tools

Is your program “soup” yet?

Eliminating bugs is a critical step in the development process, for

sure. But when that last bug goes belly up, there is still work to be

done.

by Rick Grehan

When a program has been written and tested, is the programmer’s job finished? Is
verification of correct execution sufficient to conclude work or a given program?

Real-life examples familiar to any programmer will tell you that the answer is “no.” For
instance, how many times have you needed a sort routine, and reached for the quick-and-
dirty bubble-sort? It works, but at what performance cost? And how many times has a
second look at your code revealed that a cleverly-rewritten loop or re-arranged
conditional statement will boost a frequently-called routine, thereby benefiting the entire
application?

The former example (the sorting routine)  is a case of a gross inefficiency. Your best
weapon against gross inefficiencies is your own wits: choose good algorithms, code

defensively, etc. Tackling a situation as illustrated in the latter example, however,
sometimes requires more resources than wits can provide. If you need to find those hard-
to-find inefficiencies, you have to get under the code’s hood. You need to be able to
locate the performance bottleneck – usually a single routine or basic block of code that’s
holding up everything else. Then, you need to be able to “zoom in” on the bottleneck and
explore the code’s plumbing to find the one or two lines (sometime, a single instruction)
that are eating processor time.

In this article, we’re going to examine this oft-encountered task of performance-boosting
with the help of a case study – a real-world application. This application is a relatively
straightforward “compression” program that uses a specific compression algorithm called
the “Huffman” algorithm (named after its inventor, D.A. Huffman of M.I.T.) The
program works by reading through the data that’s targeted for compression, and – using
frequency information gathered from the data -- building a special data structure called a
Huffman tree. Guided by the Huffman tree, the algorithm compresses the input data. The
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resulting compressed data can be decompressed using the same Huffman tree (we’ll go

into the details later).

We’ve written the program so that it compresses and decompresses about 10K of data. So
that we can get an idea of the runtime of the algorithm, we’ve written the program so that
it compresses and decompresses the data 4 times for a single iteration. The program runs
a number of these iterations inside of a timed loop. At the end of 10 seconds of execution,
we can determine the algorithm’s iterations per second.

On a 150 MHz Pentium system, the first version of the application performed about 16

iterations per second.

We added debugging code to verify that the program was indeed creating a Huffman tree,
compressing the data, and properly decompressing the result. The program runs correctly,
but are there areas of improvement? If so, how do we find them?

Notice that the question of performance leads into an area where debuggers are of little –
if any -- use. If a program works, then in one sense it isn’t broken (unless the system is a
real-time system, and execution within a specified window is mandatory). Debuggers can
find dangling pointers, array bound violations, loops with erroneous bounds, and so on.
But a debugger simply isn’t equipped to help a programmer fine-tune an already
functioning application.

The Right Tool

What we need is a performance analysis tool that will enable us to zero in on those spots
in the code that are taking the most time. That way, rather than having to scan through the
whole program, we can focus our attention on the trouble sites.  Time spent scrutinizing
such hot-spots is far more rewarding than perusing the entire body of source code, which

can waste time analyzing code that does not contain performance bottlenecks in the first
place.

Now, we could do our own performance analysis. Indeed, since the program calculates
iterations per second, we have a degree of performance analysis in place already. We
could use the same functions that provide that elapsed time calculation to bracket
suspected blocks of code and print out the elapsed time with a printf() statement.

(This is known as time-stamping the code.)

However, it’s unlikely that we will live long enough to use such a “do-it-yourself”
technique effectively. It would involve our adding time-gathering and data output

routines throughout the code. Then we’d have to spend more time pouring over the
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numbers, trying to make sense out of them.(Editing source-code like that is always
chancey. Try adding a single line after an if()statement and then forget to put that line

inside the bracket and see what happens. And when you get everything working, you
have to go back through the code and delete it all.  Or perhaps you can bracket all the
timing routines in #ifdef statements and write a Perl program to surgically remove it

when you want to ship the source. Do you really want to do all that?)

Happily, there are already performance analysis tools on the market that can do most of
the dirty work for us. We don’t have to invent this wheel – we just have to figure out

which is the best wheel to buy.

Peformance Analysis Tools

When you’re determining which performance analysis tool to acquire, the fact to keep at
the head of your list is that such tools use different techniques to gather analysis data.

Each technique has advantages and disadvantages – which we’ll explain in a moment. It’s
important to know the techniques and their advantages so you can make an informed
buying decision.

Some tools use what is referred to as “PC (program-counter) sampling”. The tool installs
a timer-triggered interrupt that “wakes up” at regular intervals while the target program is
executing and samples the state of the program counter. The idea is that, if enough
samples are taken over a long enough period of time, and if the sampling interval is small

enough, the result is a reasonably good picture of the distribution of execution time
within the application.

What, precisely, makes for a “small enough” sampling interval is not easily determined.
Tools that use PC sampling often recommend that you try a range of intervals; not too
coarse else the resulting data be simply useless, and not too fine else the program’s

behavior be altered by the frequent interruptions by the timing routine.

Other analysis tools work their magic by “instrumenting” the code. That is, they modify
the code in ways that are similar to our adding the time-gathering and printf() statements
as described in the timestamping technique above. Precisely how the code is
instrumented differs from tool to tool. Some actually insert source code during the
compilation process. The modified source is compiled and linked with specific libraries
Other tools work their magic using a technique known as “binary code instrumentation”

(BCI), in which they actually modify the final executable code.

Precisely how BCI works is beyond the scope of this paper. In a nutshell, a tool that uses
BCI translates the executable code to an intermediate representation known as “register
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transfer language” (RTL). RTL is a kind of combination data structure and pseudo-
assembly language, a form of which many compilers use while translating a high-level
language to the target machine code. The BCI tool then instruments the RTL

representation of the program, and translates that result back into an executable form.

There are several advantages that BCI has over source-code modification. First, since the
tool does not modify source code, it doesn’t require the developer to have source code
available. That means that third-party libraries (whose source code the user may not have
on hand) can be instrumented as well as the user’s application. Nevertheless, BCI is at its
best if you have source and symbolic code available; that allows the profiling tool to
display times associated with functions, basic blocks, and even individual lines in the

source code file.

Second, BCI can instrument code to provide either timestamping or – since BCI operates
on the executable – cycle-counting. Cycle-counting means that the tool determines the
cycle time for each machine instruction (usually, by referring to an internal database) The
tool can then run the program and, by counting the number of times each instruction is
“visited”, calculate the total time each instruction contributes to the overall runtime of the
application.  This allows the tool to provide aggregate figures for loops, basic blocks,

functions, and so on.

Cycle counting’s downside is that the tool’s database can only include “static” cycle
counts as provided by the processor manufacturer’s specifications. The true cycle count
that an instruction takes can vary. For example, an instruction that includes a fetch
through an index register will execute in a different number of cycles depending on
whether the data address is aligned to the data item being read, whether the data is in

cache, etc. Such information is not available to the instrumentation tool.

Cycle counting’s upside is that – unlike PC sampling and timestamping – it is immune to
the effects that other applications and tasks within the operating system might have on the
runtime of the application under scrutiny. It also offers very accurate resolution; you can
examine the time taken by individual lines of code.

A good BCI tool will provide a combination of cycle counting and timestamping,
allowing you to apply the strengths of each to cancel the other’s weaknesses. Having both

techniques available gives you a clearer picture of your application’s performance.

Such a tool exists: the CodeWarrior Hierarchical Profiler, a member of the CodeWarrior
Analysis Tools suite from Metrowerks, Inc. The CodeWarrior Hierarchical Profiler
provides performance analysis for C/C++ applications running on a Win32 platform
(Windows NT, 95, or 98), and is compatible with Metrowerks own CodeWarrior
Professional development environment (release 4), as well as Microsoft’s Visual C++ 2.x
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or later and Microsoft’s Developer Studio 4.x or later. The CodeWarrior Hierarchical

Profiler uses BCI technology to provide timestamping and cycle-counting.

(Author’s note: The CodeWarrior Analysis Tools also provide code coverage analysis, useful in the testing

phase of application development. Code coverage is not the topic of this paper, however, so we won’t
describe it here.)

We’ll use the CodeWarrior Hierarchical Profiler to examine our Huffman
compression/decompression application, and to guide us through improving its
performance. First, we’ll investigate the program more closely; understanding how the
algorithm works will be important as we fine-tune its performance.

Get With The Program

The Huffman compression algorithm is a character-based compression scheme. That is,
the algorithm reads in a character, compresses it, outputs the result, reads the next
character, compresses it, and so on. (Other compression schemes, such as LZW,
compress entire strings at a time.) The Huffman algorithm performs its compression by

replacing each character with a unique bit string whose length is determined by the
character’s frequency of occurrence.  High-frequency characters are replaced by short bit
strings; low-frequency characters are replaced by long bit strings.

 It works like this: You pass the algorithm a buffer holding the uncompressed data (what
we’ll call the “plaintext”). The routine passes through the plaintext, counting the
occurrence of each byte in the data, creating a 256-entry frequency table. (Each entry in
the table corresponds to a byte value.) Guided by the information in this table, the

algorithm builds a kind of binary tree data structure called a Huffman tree. The leaf nodes
of the tree consist of the original 256-entry table. Each node in the tree (with the
exception of the leaf nodes) has one parent and two children. One edge from parent to
child is marked “0”, the other is marked “1” (representing binary digits).

Once the tree is built, the compression algorithm is fairly straightforward. The routine
reads an input character from the plaintext, and locates that character’s corresponding
node at the tree’s root. Next, the compression routine travels “up” the tree, from leaf to

root, keeping track of each edge (whether it is a “0” edge or a “1” edge) as it moves from
node to node. In so doing, the routine builds a bit string that is the Huffman code for the
plaintext character. (The bit string is backward, since the routine travels from leaf to root,
but reversing the string is easily taken care of in software.)

Uncompressing the data amounts to following edges through the tree in reverse. The



Using Performance Analysis Tools 6

www.metrowerks.com FINAL 3/12/99

algorithm reads bits in sequence from the compressed data and, starting at the root,
follows a trail of “0” and “1” edges (depending on the bit value that’s been read) to a leaf
node, which corresponds to the uncompressed character. The algorithm outputs the
corresponding character, returns to the root, extracts the next bit from the compressed

data, and continues.

Figure 1. The Huffman compression algorithm. At this point, the Huffman tree has already been

built. The algorithm reads the uncompressed data (in the plaintext[] array) and compresses it into

the buffer pointed to by comparray.

The portion of the algorithm that performs the actual compression is shown in Figure 1.
The code is composed of two while() loops within a single for() loop. The outer

for() loop steps through each character of the plaintext buffer. The first while()

loop reads “up” the tree, building the bit string that represents the Huffman code
(reversed) for the character. The next while() loop steps backward through that bit

string, setting the appropriate bits in the array that holds the compressed data
(comparray) with the help of the SetCompBit() function.
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Since compression is the first function of the program, we’ll focus our attention on that
part of the code for our first run. First, however, we need to create a project within the

CodeWarrior Hierarchical Profiler.

This is the easy part. The only prerequisite is that we have a compiled executable on
hand, and – for best results – the source and symbolic files. (Since we created our
executable using the CodeWarrior Pro 4 C/C++ IDE, creating the symbolic information
needed was a simple matter of re-building the executable with debugging on.) The
CodeWarrior Hierarchical Profiler provides a setup wizard that hand-holds you through
the process of creating a project. It prompts you for the destination directory (where the
profiling data files will be stored), prompts for the initial instrumentation technique, lets
you enter any command-line arguments that should be passed to the application at
runtime, and even allows you to select which modules within the application are

instrumented. (The default is all modules.) Figure 2 shows a screen shot of the
CodeWarrior Hierarchical Profiler setup wizard in action.

Figure 2. The CodeWarrior Hierarchical Profiler’s setup wizard in action.

With the project built, instrumenting and running the application is a simple selection

from a menu. Because our application had not yet been instrumented, we selected
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“Instrument & Run”. The CodeWarrior Hierarchical Profiler builds a separate,
instrumented executable, then launches it. As the application runs, you can watch its
activity in a stack crawl window provided for each thread in the application. Figure 3
shows the stack crawl window for the Huffman application. (While our program is
single-threaded, the CodeWarrior Hierarchical Profiler handles multithreaded

applications as well.)

Figure 3. Running the application in the CodeWarrior Hierarchical Profiler. The Profiler tracks

the execution in a stack crawl window. You can see the call chain of routines within each thread

of execution.
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The results of our first run using timestamps is shown in Figure 4. This is the “modules”
view of the collected data. The leftmost window shows the various source-code and
library modules in the program. In the upper right, the function view shows – among
other things – the hierarchical time taken by each function in the selected module. For
example, we can see that the DoHuffIteration() function consumes 12.11s of the

total 12.14s taken by the DoHuffman() function. “Hierarchical time” means that the

time shown is only the amount of time within the function hierarchy that we’re viewing.
In other words, the time shown for DoHuffIteration() is only the amount of time

the function consumes where called from DoHuffman(). Any time taken by

DoHuffIteration() as called from other functions is not shown in this view (even

though, in this particular application, no other functions call DoHuffIteration()).

Focusing in on the hierarchical view of the DoHuffIteration() function (the middle

window showing the two pie charts) we turn our attention to the lower pie chart. This
shows the amount of time taken by the inline code of DoHuffIteration(), as well

as the time taken by its children routines. There are 4 child routines involved:
SetCompBit(), GetCompBit(), StopStopWatch(), and

StartStopWatch(). We’re not interested in the “stopwatch” routines, they are part

of the code that calculates the iterations per second that the program reports. Also, as can
be seen from the pie-chart, they have little effect on the execution of
DoHuffIteration().

What we are concerned with, however, is how much time the SetCompBit() and

GetCompBit() routines are taking. The hierarchical window shows us that, while the

inline code of DoHuffIteration() takes 4.57 seconds, SetCompBit() takes 3.86

seconds, and GetCompBit() takes 3.68 seconds. The SetCompBit() and

GetCompBit() routines involve little computation; the former sets bits in the

compressed array, the latter reads bits; one bit per call, in each case. Yet, each consumes
nearly one-third of the overall runtime of the DoHuffIteration() function.  Such

simple routines shouldn’t take so much time.

We need to focus in on the execution of the SetCompBit() and GetCompBit()

routines, so we can see what parts of them are taking the time. To do this, we need re-
instrument the code so that the profiler will capture instruction-cycle counting, then re-
run the application and focus in on the suspect routines.
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Figure 4. The CodeWarrior Hierarchical Profiling output display for the timestamped Huffman
algorithm. The DoHuffIteration() routine builds the Huffman tree, compresses and

decompresses the data four times (counted as a single iteration of the test). Note that large
portions of time within the DoHuffIteration() routine are consumed by two child routines

– SetCompBit() and GetCompBit().

Though we set the instrumentation technique to timestamping when we built the project,

CodeWarrior’s Hierarchical Profiler lets us modify the project parameters through a
project settings dialog. It’s an easy matter to change the timing method from
timestamping to instruction cycle counting, re-instrument, and re-run the code. (We don’t
have to recompile the application to do this.)
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Figure 5. The project settings dialog box within the CodeWarrior Hierarchical Profiler. Note that

we can select instruction cycle counting or time stamping data gathering techniques.

From the project settings dialog (shown in Figure 5, above) we select instruction cycle
counting in the Timing Method box. An adjacent drop-down pick-list allows us to select
the Intel Pentium as our target processor. (The other choice is Intel 486. The Hierarchical

Profiler is expected to provide additional processor support in the near future.)

With the new timing method set, it’s a simple matter to re-instrument the application and
re-run it; we use the same menu selection we used to the first time we ran the application.
(Re-instrumenting takes about 5 seconds for a 255K executable on our 150-MHz Pentium
system).

After we re-run the application, we move to the source view window in the CodeWarrior

Hierarchical Profiler as shown in Figure 6. (The source window was also in Figure 4, in
the lower left hand corner. For the sake of simplicity, we’ve shown only the source
window in Figure 6.)



Using Performance Analysis Tools 12

www.metrowerks.com FINAL 3/12/99

Figure 6. The source view of the SetCompBit() routine. With cycle counting enabled, we can see

the execution times of individual statements in the source code. Note the comparatively large

amount of time taken by the statement in line 2986.

As you can see in Figure 6,  we have scrolled down to view the SetCompBit()

function. We instantly see that a single line -- line 2986 -- takes more time than all other
lines combined. This is obviously a line that deserves our attention. Is there anything we
can do to reduce its execution? To answer that, we have to figure out what that line does

in the routine.

Recall that the job of SetCompBit() is to set the value of a bit in the output

(compressed) array, an array of 8-bit characters (bytes). One of the incoming arguments
to SetCompBit() is bitoffset, which contains the address of the bit in the output

array. Obviously, lines 2985 and 2986 work together to resolve the bit address in the
array to a byte address (which is calculated in line 2985 and stored in byteoffset) and

a bit address (bitnumb) within the target byte. The SetCompBit() routine calculates

byteoffset by a right-shifting bitoffset by 3 bits, effectively dividing it by 8 to

derive the byte offset. Similarly, SetCompBit() calculates bitnumb by taking the

remainder of bitoffset divided by 8 (using the modulus operator). Obviously, line

2986 takes so long because it uses a division instruction. Division instructions are

notoriously slow as compared to other processor instructions.

But, wait. The modulus operation performed in line 2986 has a base of 8 – a power of
two. We can  calculate the remainder of bitoffset divided by 8 just as easily using a
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simple bitwise AND operation. Replacing line 2986 with:

bitnumb=bitoffset & 7;

will yield the same answer, as the current line 2986, but without resorting to division. A
bitwise AND operation is an extremely fast processor instruction.

Armed with this new insight, we return to the source code and make the change. We
recompile, re-instrument (still using instruction counting) and re-run the application from
within the CodeWarrior Hierarchical Profiler (see Figure 7). As before, we turn our
attention to the source window for the SetCompBit() routine.

Figure 7. Re-execution of the code after fixing a single line of code. We can see that the amount

of time taken by the new statement is down to 11.40ms from 250.91ms (in Figure 6). Also, notice
that the pie chart in the hierarchical view shows that the SetCompBit() and GetCompBit()

routines take less of the entire execution time of DoHuffIteration().
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We commented out the old line; its replacement is line 2987. The difference in execution
is significant – we’ve reduced an execution time of over 250ms to an execution time of
just above 11ms (reduced by a factor of 20). Our analysis of the situation appears to have
been correct. (Note: Not shown was the fact that a corresponding remainder operation
was executed in the GetCompBit() function. We replaced that line with an equivalent

bitwise AND operation. We didn’t show all that because it was simply a repeat of what we

did to the SetCompBit() function.)

If you look in the hierarchical view window, you’ll see that the relative portions of the
time taken by the SetCompBit() and GetCompBit() functions has been noticeably

reduced. Compare the lower pie-chart in the hierarchical view window with its
corresponding chart in Figure 4. (Note: You might be wondering why the times shown in

figure 7 are so much smaller than the original times shown in figure 4. It appears that the
entire execution time of the application has been remarkably reduced. However, the
timings shown in figure 4 were gathered with code that was instrumented for
timestamping, while the timings shown in Figure 7 were gathered with code instrumented
for instruction cycle counting. Recall that timestamping  gathers information as the
program runs in real-time; cycle counting, on the other hand, estimates instruction cycles
of machine language executed for each line of code. Consequently, we should expect the

recorded times to be different depending on the style of instrumentation.)

To verify that the changes have indeed improved the execution of the code, we re-run the
modified (non-instrumented) executable and discover that our Huffman routine now
executes 24.16 iterations per second – an improvement of 51 % -- and all from changing
a single operator used in 2 lines of code!

But Wait, There’s More

Anxious to continue our improvement of our application, we return to one of the earlier
profiles. This allows us to recall performance information that’s been gethered on earlier

runs.

If you look at Figure 8, you’ll see that we’ve selected SetCompBit() in the functions

view window. The hierarchical view window tracks our selection, showing information
for the SetCompBit() routine.  You can see that SetCompBit() is not only a “leaf”

routine (that is, it calls no other routines), but it is also called from one location only.
SetCompBit() has only one parent – DoHuffIteration(). (We know that

SetCompBit() has no children because the lower pie-chart is solid:
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Figure 8. The hierarchical view “inside” SetCompBit(). SetCompBit() is called by a

single parent function – DoHuffIteration() – and calls no children functions. Hence,

SetCompBit() is an ideal candidate for inlining.

SetCompBit()’s time is all “self” time. We know that SetCompBit() has only one

parent because the upper pie chart is also solid. All SetCompBit()’s time is attributed

to calls from DoHuffIteration().)

Consequently, SetCompBit() is an excellent candidate for inlining. Moving the

function of SetCompBit() into DoHuffIteration() will not only save execution

time on account of the removal of the “call” and “return” and all related stack
management instructions, it will give us an opportunity for further execution
improvement by buffering some information that couldn’t be buffered because of the
decoupling between SetCompBit() and DoHuffIteration().

Here’s what we mean by that last statement: If you look back at Figure 6, you can see
that SetCompBit() modifies each byte in the output array by reading the byte, setting

the appropriate bit, and writing the modified byte back out to memory. This read-modify-
write cycle must take place for each bit written into the output array. If we look back at
Figure 6, we can see that SetCompBit() is called approximately 855,364 times –

that’s 855,364 read-modify-write operations.
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However, if we inline the activity of SetCompBit(), we can improve performance by

writing the byte out only it must be written out. That is, after all its bits have been
modified. Furthermore, since writing the compressed data involves overwriting the entire
output array, we can eliminate reading bytes altogether. (This is not a read-modify-write
operation, it’s simply a write operation.)

Figure 9. The modified compression algorithm with the functionality of SetCompBit() merged

into DoHuffIteration (compare with Figure 1, above).

The modified portion of the Huffman algorithm is shown in Figure 9. Note that we’ve

added a couple of variables, and changed the meaning of a third. We added the
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byteoffset variable, which tracks which byte in the output array the algorithm is

currently processing. We’ve also added a variable called tchar, which is a temporary

holding variable that holds the value of the output byte currently being processed. The
bitoffset variable, which before held the address of the bit in the output array, now

holds the address of the bit within the current byte; that is, he bit within the byte
addressed by byteoffset.

This temporary variable allows us to eliminate redundant write operations. The output
byte is “built” in tchar, and written into the array only when necessary (when the

bitoffset variable’s value equals 8). Also notice that the temporary variable is

initialized to zero. This allows us to eliminate half of an if() statement that existed in

the original SetCompBit(). Only “1” bits need be set in the output byte.

Recompiling the application and re-running it yields profound results. The number of
iterations per second reported jumps to 50.16. We have tripled the performance of our
application. And, given that the application both compresses and decompresses the test
data, we can improve overall execution even more by inlining the counterpart to
SetCompBit(), GetCompBit(). The resulting modification is so similar to what

we’ve shown above, that we won’t cover it here.

Conclusion

In this paper, we’ve seen how a performance analysis tool can help us “hot-rod” an
application. In particular, we’ve seen how CodeWarrior’s Hierarchical Profiler enabled
us to zero in on problem routines; single, problem lines, in fact. We’ve seen how easy it
is to make a modification, recompile, and know whether the modification was successful
or not. The Hierarchical Profiler’s ability to switch between timestamping and instruction

cycle counting made this process even easier.

Since the profiler was hierarchical, we could easily identify “parent and child”
relationships among routines (who is calling whom); that information lets us identify
routines called exclusively from a single site, and which could be inlined for substantial
performance gains.

Our conclusion is that a good performance analysis tool should be in every programmer’s
toolbelt. The decisive word, here, is “good.” You should choose a tool that provides more
than one data-gathering technique. Sometimes you’ll want to use timestamping, and
sometimes you’ll want to use cycle counting. Equally important is the tool’s data display
capabilities. The CodeWarrior Hierarchical Profiler’s data display provided a module
view, a function view, a hierarchical view (of parent and child function data), and even a
source-code view.


